AUS | الجامعة الأميركية في الشارقة American University of Sharjah

BIM as a Pedagogical Tool for Teaching HVAC Systems to Architecture Students

Dr. Ahmed Mokhtar

Professor | Architecture
College of Architecture, Art, And Design

Environmental Control Systems (ECS)

Proposed Sequence of Study Bachelor of Architecture (BArch)

FIRST YEAR (30 credits)				
Term	Course #	Course Title	Credit	
Fall	DES 111	Descriptive Drawing I	3	
	DES 121	Introduction to Architecture, Art and Design History	3	
	DES 131	Design Foundations I	3	
	MTH 111 or MTH 103	Mathematics for Architects or Calculus I	3	
	WRI 101	Academic Writing I	3	
		Total	15	
Spring	DES 112	Descriptive Drawing II	3	
	DES 122	Modern Developments in Architecture, Art and Design	3	
	DES 132	Design Foundations II	3	
	WRI 102	Academic Writing II	3	
	GER-Core	History and Culture of the Arab World	3	
		Total	15	
		SECOND YEAR (36 credits)		
Term	Course #	Course Title	Credit	
Fall	ARC 201	Architectural Design Studio I	6	
	ARC 271	Introduction to Landscape	3	
	ARC 281	Architectural Principles	3	

	F	OURTH YEAR (30 credits)	
Term	Course #	Course Title	Credit
Fall	ARC 401- 01	Architectural Design Studio V	6
	ARC 421	Architectural Theory	3
	ARC 451	Environmental Control Systems	3
	GER-Core	Arts and Literature	3
		Total	15
Spring	ARC 402	Architectural Design Studio VI	6
	ARC 463	Professional Practice	3
	GER-SCI	Natural Sciences	3
	FRE	Free Elective	3
		Total	15
		FIFTH YEAR (30 credits)	
Term	Course #	Course Title	Credit
Fall	ARC 501	Architectural Design Studio VII	6
	ARC 581	Critical Practice and Contemporary Discourse	3
	ARC 591 or FRE	Directed Architectural Design Research or Free Elective	3
	GER-Core	Human Interaction and Behavior	3
		Total	15

Typical Subjects in an ECS Course

- HVAC Systems
- Water Supply and Drainage Systems.
- Fire Protection Systems.
- Electric Systems.
- Mechanical Vertical Transportation Systems.
- Others.

Objectives of Learning HVAC (for Arch Students)

- 1. Recognize the **terminology** used in these systems.
- 2. Understand to a reasonable extent the **design concerns** of an HVAC engineer.
- 3. Recognize the **impact** of the HVAC system components on the building architecture.

4. Recognize the potential of using the HVAC components as **architectural elements**.

Difficulties to Teach the Subject (to Arch Students)

- Students' recognition of the importance of the subject to their professional career.
- The components of a typical central HVAC system are commonly hidden in a building.

 The difficulty to make architecture students like the subject.

Tools that Help Students' Learning

- <u>Lectures</u> that are **enriched** with photos and videos.
- <u>Field trips</u> allow students to closely see and touch the different components.
- <u>Class exercises</u> to discuss the **logic** for integrating the HVAC system components with the architecture design.

Example of a Class Exercise

- Determine the type, location, and distribution elements for a central HVAC in the shown villa.
- In particular, you need to define the following:
 - Air system vs. Water system. Hence, the type of needed equipment
 - Location of the FCUs (if needed)
 - Location of the pipes/ducts (as needed)
 - Location of the supply and return diffusers / registrars / grills.
- Make sure to make appropriate decisions so you do not have ducts or other components interrupting the architecture design of the spaces (unless on purpose)

Stages of Class Exercises

Two Stages:

Demonstration by the instructor.

Students do it themselves for a different case.

Common Learning Challenges

- Relationship between HVAC components and elements that go through several floors (e.g. stairs).
- Relationship between suspended ceilings and ducts.
- Relationship between vertical ducts connecting HVAC machines on the roof with horizontal ducts in the plenum of lower floor.
- Relationship between return duct that goes to the roof, the plenum as the space used for return air, and the walls that cut that plenum.

Common Learning Challenges

- Relationship between HVAC components and elements that go through several floors (e.g. stairs).
- Relationship between suspended ceilings and ducts.
- Relationship betwee Visualizations on necting HVAC machines on the roof wilsues on the plenum of lower floor. Issues
- Relationship between return duct that goes to the roof, the plenum as the space used for return air, and the walls that cut that plenum.

Challenges of Using BIM

- The non-familiarity of many students with the tool.
- The limited time available in a lecture.

The software needs to be customized for the purpose

Software (Revit) Customization

Students' Feedback

Feedback on using BIM to explain accommodating HVAC systems

The difference in understanding the subject when BIM is used was (Check one):

The same

Better 🗖

Significantly Better 🗖

Please write any comments here:

- It was helpful to see all the system components in 3D instead of only imagining them, which is much clearer.
- We need to know BIM.
- Using the two approaches together is also useful.

AUS | الجامعة الأميركية في الشارقة American University of Sharjah

