
WASTEWATER TREATMENT PONDS: ASSETS OR LIABILITIES?

Steve Worrell, P.E. Summit Engineering

INTRODUCTION

PONDS AND LANDFILLS??

https://www.epa.gov/landfills/municipal-solid-wastelandfills

CP4-POND #1 & #2 DOLEVEL CONTROL 440 VAC 1. 145 2016/10/05

WHY PONDS?

- Historical Use in Farming
- Inherent equalization storage
- Resistant to shock loading
- Ease of Management
- Seasonal Loading

http://napamosquito.org/about-us/history/#prettyPhoto

LINING SYSTEM

↓ Compacted Clay Liner

- ➡ 12" thick min
- → 1x10⁻⁶ cm/s
- → Resistant to UV
- ⇒ Shrink/swell degradation

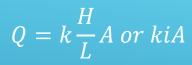
Geosynthetic Liner

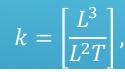
- ⇒ 40 and 60 mil thickness common
- ➡ Impermeable*
- → Textured or smooth
- → Chemical resistance

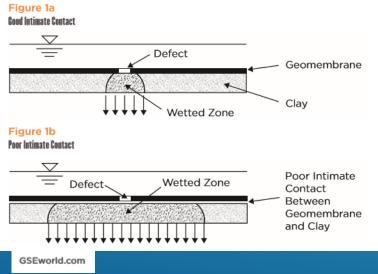
*Not impermeable

POND DESIGN 101 - LINER SELECTION

- Clay availability drives cost
- Slope
- Longevity
- Repairs
- Warranty
- M&O
- Leakage Concerns


DESIGN ASPECTS


- Overall Slope stability and interface friction
- Anchor trench pull out
- Subdrain conveyance
- Cell Layout & Flexibility



A WORD ON LEAKAGE

- Depends on storage depth
- Clay: Estimated with Darcy's Law
 - \Rightarrow Permeability = 1x10⁻⁶ cm/s
- Membrane: dependent on defects
 - → Giroud equation
 - Defect density and shape
 - Subgrade soil
 - Intimacy
- Typical Rates:
 - ⇒ 130 to 3,000 gal/acre-day
 - ⇒ 10^{-6} soil ≈ 500,000 gal/year per acre

PONDS AS ASSETS: CO

- ↓ Low capital cost
- Simple Components
- Simple Design

PONDS AS ASSETS: COST

- ↓ Low capital cost
- Simple Components
- Simple Design

PONDS AS ASSETS: MAINTENANCE

- Straightforward monitoring
 - pH, dissolved oxygen, freeboard
 - ➡ BOD at lab
- Reliable Equipment
- Chemical addition typ unnecessary

A Tradition of Stewardship A Commitment to Service

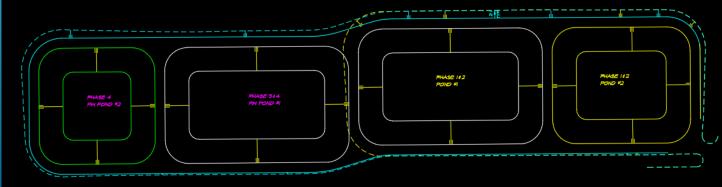
Planning, Building & Environmental Services

1195 Third Street, Suite 210 Napa, CA 94559 www.countyofnapa.org

> David Morrison Director

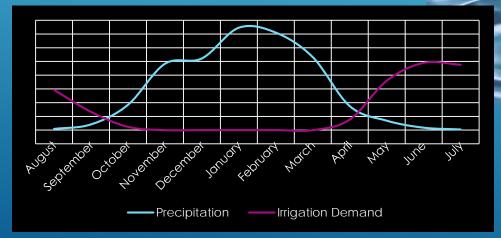

Winery Wastewater Reporting Requirements

The following summarizes the monitoring requirements:


- Weekly monitoring throughout the year for DO, pH, freeboard and odor.
- Monthly monitoring throughout the year for BOD and total flow.
- 3. **Quarterly online reporting only** throughout the year; crush needs no separate submission.

PONDS AS ASSETS: EXPANSION

- ↓ Flexibility:
 - ➡ Improve aeration
 - ⇒ Build new cells
 - Add pretreatment
 - → Add polishing



http://www.triplepointwater.com/efficient-lagoon-artation

PONDS AS ASSETS: STORAGE

- ↓ Long retention time (60-90 days)
 - ➡ Equalization
 - ⇒ pH buffering.
- Effluent storage
 - Allows seasonal transfer
 - Stormwater diversion

PONDS AS LIABILITIES: TREATMENT

- ↓ Effluent Quality
 - ⇒ BOD around 60-90 mg/L typical
 - ightarrow TSS similar
- ↓ Algae
 - Additional solids
 - → Maintenance
- Winery Irrigation Reuse
 - ➡ Water quality
 - Irrigation timing
- Change in Regulation?

PONDS AS LIABILITIES: SLUDGE

- Biosolids Formation Inevitable
 Byproduct and Residual
 Management & Planning
 Cost forecasting
- Removal: Costly and Slow
 - Potential for damage
- Retention Time
- Endogenous Decay

PONDS AS LIABILITIES: STORAGE

- Slow to Fill = Slow to Empty
- Emergency Repairs...
- Startup Concerns
- lnertia
- ↓ Water Losses:
 - ➡ Evaporation
 - ➡ Infiltration

PONDS AS LIABILITIES: ENERGY

- Energy Cost

 Organic Load & Aeration Efficiency
 - Saturated DO vs Minimum
- Control Strategy:
 - No Controls << Timer Based << DO Sensor Based
 - Increases Maintenance/O&M

PONDS AS LIABILITIES: AGE

- ↓ Earth Dams require maintenance
- Maintenance Program:
 - → Valves
 - Vegetative cover
 - Embankment Slope
 - → Leak Detection
- Liners Fail
- What was that pipe for?

Photo Credit: William Croyle, California Department of Water Resources

CASE STUDY EXAMPLE: SLUDGE

CASE STUDY EXAMPLE: SLUDGE

CASE STUDY EXAMPLE: EROSION

CASE STUDY EXAMPLE: FLOATING LINER

CASE STUDY EXAMPLE: FLOATING LINER

CASE STUDY : ABANDONED INFRASTRUCTURE

REFERENCES & QUESTIONS?

https://geosynthetic-institute.org/papers/paper15.pdf

http://www.gseworld.com/content/documents/technicalnotes/Hydraulic_Equivalency.pdf

https://www.epa.gov/landfills/municipal-solid-waste-landfills

https://www.epa.gov/sites/production/files/2014-09/documents/lagoon-pond-treatment-2011.pdf