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recordable incidents on construction sites are extremely rare, which results in data that are too sparse to make predictions with high statistical
power. This paper empirically reviews different approaches to safety to increase the understanding of conditions associated with safety
success and failure. Empirical data about business-, project-, and crew-related factors were collected to predict serious injury and fatality
(SIF) exposure conditions. A variety of modeling techniques were tested in a machine learning pipeline to identify the most accurate and
stable predictive models. Results showed that the multilayer perceptron (MLP) approach best distinguished SIF exposure conditions from
safety success conditions using nonlinear decision boundaries. The most influential factors in the models included the crew experience
working together, supervisor experience with the crew, total number of workers under the supervisor’s purview, and the maturity of leadership
development programs for frontline supervisors. This study showed that data sets with both success and failure information yield more
reliable and meaningful predictions than data sets with failure alone. Such an approach to safety data collection, analysis, and prediction
could be used by future researchers to generate new insights into the causes of serious incidents and the relationships among causal factors.
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Introduction

Despite efforts to eliminate serious injury and fatalities (SIFs),
fatality rates have plateaued for the last 10 years, and the construc-
tion industry still remains as one of the deadliest industries (US
Bureau of Labor Statistics 2020a). In 2019 alone there were
1,102 construction worker fatalities, the highest number of deaths
in construction since 2011 (Brown et al. 2021; US Bureau of Labor
Statistics 2020b). In response to the intolerable societal, emotional,
and financial distress associated with SIFs, the construction indus-
try continues to increase its investment in SIF prevention. Among

the many areas of SIF prevention, predictive models always have
received considerable attention because they focus on proactive ac-
tions, rather than on reactive learnings. In practice, being predictive
allows safety professionals to act before a serious injury occurs
(Hallowell et al. 2019). In academia, predictive studies help to
understand the primary causes of unsafe conditions and the rela-
tionships among driving factors. Being able to accurately predict
injury potential and take action before an event occurs has become
a central mission in modern safety research and practice.

However, the data sets used in such predictive models focused
only on failure (e.g., documentation and conditions surrounding
injuries), which limited the predictive models to predicting different
injury outcomes only if an injury were to occur. Tixier et al.
(2016b) used machine learning (ML) to generate a model that pre-
dicts injury type, energy type, and body part impacted based on the
observable work features (e.g., materials, tools, and equipment) ex-
tracted from actual injury reports. Although the model made suc-
cessful predictions of the characteristics of an injury if one were to
occur (e.g., if a worker was to be injured in this work period, it is
most likely to be a fall to lower level). Unfortunately, models based
only on failure data are incapable of distinguishing success from
failure or of estimating the likelihood that an injury will occur.
As highlighted by De Finetti et al. (2017), only data sets that cap-
ture all outcomes related to the studied consequence can facilitate
robust likelihood assessments and differentiate these outcomes
from each other given the data space available. Therefore, the
present study focused on predicting success and exposure condi-
tions rather than the prediction of incidents. Here, success is
defined as a condition in which a high-energy hazard has a corre-
sponding direct control. Conversely, exposure is a condition in
which workers are exposed to a high-energy hazard without a
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corresponding direct control (Oguz Erkal and Hallowell 2023). De-
tailed definitions were provided in the “Literature Review” section.

Another limitation of current methods of safety prediction is that
factors at different levels of the organization typically are consid-
ered independently. For example, leading indicator research fo-
cuses on the quality and quantity of injury prevention activities;
safety climate research focuses on perceptions of safety and em-
ployee satisfaction with the safety system; and precursor analysis
focuses on assessment of human factors. However, at any time, all
these potential predictors may interact to create conditions of safety
success or exposure. Even though they might be evaluated and
managed separately in practice, their interaction and interdepend-
ency should be considered to increase predictive power and en-
hance our understanding of how unsafe conditions emerge. This
study created a unified predictive model that includes predictors
at the business, project, and crew levels.

This study contributes to the body of knowledge by (1) building
a new data set that includes both conditions of success and expo-
sure as the target outcome variable, and (2) examining the impact of
new potential predictors at different organizational levels on pre-
dicting safety success and exposure. By creating a new data set with
operational definitions of both success and failure, studying a new
set of potential predictors at different levels of the organization, and
deploying the latest methods in machine learning to determine pre-
dictors that distinguish success and failure on jobsites, this study
advances the science of safety prediction and enables construction
professionals to better assess safety risk and make evidence-based
proactive safety decisions.

Literature Review

This literature review presents the existing knowledge in three
primary domains related to safety prediction: (1) safety prediction
methods; (2) dependent variables in safety; and (3) analytical and
statistical methods used in the models making safety predictions.

Safety Prediction Methods

Safety predictions typically are based on different pieces of avail-
able safety information, including but not limited to risk assess-
ments of observable attributes (e.g., materials, tools, and work
practices), leading indicators (e.g., prejob safety meetings), safety
climate (e.g., perception of and satisfaction with management com-
mitment to safety), and human factors (e.g., distractions, fatigue,
and work pressures) (Hallowell et al. 2019).

As the most traditional safety prediction tool, safety risk data
often are recorded as text-based reports that describe the circum-
stances surrounding an injury; categorical information about the
injury such as severity, type, and body part affected; and counts
of injuries over time (Esmaeili et al. 2015a; Tixier et al. 2017). Risk
analysis techniques typically are used to associate observed condi-
tions such as behaviors, work tasks, and environmental conditions
with outcomes such as injury type and severity. This approach to
safety prediction implicitly assumes that associative relationships
(e.g., the correlation between task type and an injury outcome) ap-
ply to future conditions as well. Although risk assessments are re-
lated closely to operations or tasks, current methods do not model
real-time conditions or support proactive decisions (Hallowell et al.
2019; Oguz Erkal et al. 2021).

As a response to traditional risk assessments, safety researchers
developed the term “safety leading indicators,” which traditionally
refers to the frequency with which a safety activity is performed
(Alruqi and Hallowell 2019; Hinze et al. 2013; Salas and
Hallowell 2016). This may include safety program elements such

as the frequency of jobsite audits, personal protective equipment
(PPE) programs, drug testing, leadership engagements, pretask
planning, near-miss reporting, and safety orientations (Salas and
Hallowell 2016). There is strong evidence that trends in the fre-
quency of safety activities are highly correlated with the long-term
trends in injury rates (Salas and Hallowell 2016; Versteeg et al.
2019). Researchers continue to identify and validate new leading
indicators to generate more predictive power (Guo et al. 2017).
Despite the benefit of safety leading indicators, there are some lim-
itations that prevent them from being used as perfect indicators of
future safety performance. First, the predictive power of safety
leading indicators tends to be only moderate because the counts
of safety activities do not capture the quality with which the activ-
ities are performed (i.e., increasing quantity may result in decreased
quality of implementation). Second, a lack of consistent definitions
of leading indicators across the industry severely limits the external
validity of the modeling results. Third, the directionality of the pre-
dictions may be suspect because it is unclear whether the injury
rates are responding to trends in the safety activities, or if the im-
plementation of safety activities is responding to trends in injury
rates (Lingard et al. 2017).

Another response to reactive safety prediction models is in form
of behavior-based safety, which considers safety predictions based
on human behaviors such as safety climate and human factors re-
search. Safety climate acts as a proxy measure for safety culture
that uses employee perceptions of the safety systems in place, such
as management commitment, training, and safety resources to
make predictions on future performance (Alruqi et al. 2018; Siu
et al. 2004). Recent studies examined many different human factors
that may serve as a warning sign before or during a given work
period for a SIF. Experiments showed that the factors with the
highest predictive capacity were related to human factors such
as distraction, fatigue, risk normalization, and schedule pressures
(Alexander et al. 2017a, b). Although the predictive capacity of
such research has been established by measuring the strength of
the associative relationship between metrics and injury rates, the
data collected remain highly subjective, are a snapshot in time, and
cannot be standardized against a baseline.

In summary, risk assessments can report risks that are related
closely to operations and tasks (Baradan and Usmen 2006; Choe
and Leite 2016), but current methods do not provide real-time in-
sight that allows practitioners to be truly proactive in their interven-
tions. Leading indicators can capture real-time information about
the safety system (Guo and Yiu 2016). However, their relationship
with highly consequential results is ambiguous, and their defini-
tions and applications are highly inconsistent in practice (Oguz
Erkal et al. 2023). Safety predictions based on human factors
could be consequential and measured in real-time, but the collected
data are not objective by definition due to dependence on observer
or worker perceptions (Alexander et al. 2017b; Schwatka and
Rosecrance 2016). As a result, in view of the existing safety pre-
diction methods described previously, this paper identifies of the
need for a predictive model that is based on consistent data that
can capture real-time information that is objective and closely re-
lated to highly consequential risks.

Dependent Variables in Safety

Every predictive model aims to make an educated guess about the
likelihood of an event, condition, or trend. Although the importance
of safety prediction models cannot be overstated, their quality very
rarely is called into question within the occupational health and
safety literature, especially as it relates to using injury rate as
the data source. Typically, only past safety incidents are used to
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predict potential future injuries and fatalities (Raheem and Hinze
2014). The target safety outcome most often is an injury rate,
such as the Occupational Safety and Health Administration’s
(OSHA’s) total recordable incident rate (TRIR). However, a truly
predictive model would require success- and failure-related data in
order to be able to distinguish success- and failure-related charac-
teristics before making likelihood assessments (De Finetti et al.
2017).

Incident rates are recognized as an intuitive metric for predic-
tions due to the ease of data collection, quantitative data represen-
tation, and rationalization of the concepts (Lingard et al. 2017).
However, injury rate as an outcome variable is statistically prob-
lematic to model as an outcome because injuries are relatively rare
even over long periods (Hallowell et al. 2021), randomly distrib-
uted with very large variation (Hallowell et al. 2021; Hopkins 2009;
Lingard et al. 2017), and contextually ambiguous (Raheem and
Hinze 2014). Using incident rates as a relative indicator of success
or failure inherently is based on the assumption that periods with a
lower rate of incidents were definitively safer (i.e., the absence of
injuries is the presence of safety).

Modern views of safety suggest that injury rates do not provide
information about safety performance because they do not capture
the true nature of what safety looks like (Hollnagel 2014).
Although safety philosophers have argued that “safety is the pres-
ence of safeguards (i.e., capacity),” (Hollnagel 2015) they have not
offered an operational way to collect such information (Dekker
and Pitzer 2016; Hollnagel 2014; Raheem and Hinze 2014). Fur-
ther understanding and assessment of safety success is warranted
(Choi et al. 2020; De Finetti et al. 2017). Although a few studies
have built predictive models using data from incident and nonin-
cident cases (e.g., Alexander et al. 2017b), the chief assumption
made is that nonincident cases are always safe. Unfortunately, this
is antithetical to the modern understanding of safety as the presence
of safeguards rather than the mere absence of injuries (Hollnagel
2015; Lofquist 2010).

Safety prediction techniques require a more robust dependent
variable that is statistically stable and in line with the contemporary
safety perspectives. For example, safety recently has been recon-
ceptualized as the continuous presence of defenses and controls
against safety risks, instead of the mere absence of injuries
(Hollnagel 2014, 2015; Lofquist 2010). Building on this new
definition of safety, this study focuses on conditions instead of
incidents. A new safety performance metric, high energy control
assessment (HECA), was used as the dependent variable and the
main performance metric in this paper (Oguz Erkal and Hallowell
2023).

HECA is an observation-based variable that measures the pro-
portion of high-energy hazards found on a worksite with a corre-
sponding direct control. Thus, HECA represents two conditions:
success, in which all high-energy hazards are observed to have
a corresponding direct control; and exposure, in which one or more
high-energy hazards do not have a corresponding direct control. As
a condition assessment, HECA can be observed any time that work
is being performed, and analysts do not need to wait for an incident
to occur to measure safety. This allows HECA to be measured at a
much greater frequency than incident rates and to yield statistically
significant samples relatively quickly, which could allow more-
advanced modeling techniques to be used on the data sets. In
contrast to the highly reactive injury rates that are based solely
on failure, HECA offers an opportunity to capture success and ex-
posure proactively, before an incident occurs. This allows the mod-
els to make comparisons between the two classes for more-reliable
predictions based on the distinction.

High-Energy Hazard
The hazard assessment component of HECA is built on the under-
standing that every injury is the result of the contact between a
source of energy and the human body (Albert et al. 2014, 2017;
Tixier et al. 2018). This theory was extended when researchers
found that the magnitude of energy directly predicts the severity
of the outcome (Hallowell et al. 2017). Specifically, it was found
that when energy exceeds a specific threshold (1,500 J), the hazard
is most likely to cause a serious injury or fatality. Thus, when en-
ergy sources exceed the 1,500-J threshold, they are labeled high-
energy. Because the assessment of some energy sources can be very
complex and infeasible in practice, Hallowell (2020) presented the
high-energy assessment of 13 high-energy sources that represent
approximately 85% of workplace injuries. These include hazards
such as heavy mobile equipment, fall from elevation over 4 ft,
and suspended loads.

Direct Control
HECA is built on the principle that every high-energy hazard
should have an adequate control to protect against a serious injury
or fatality. This is aligned with the philosophy that safety is not the
absence of injury but the continuous presence of safeguards and
controls. A control is considered to be sufficient and is labeled
as a direct control if it is (1) targeted at a specific high-energy haz-
ard; (2) mitigates the high-energy hazard when installed verified
and used properly either by eliminating the energy or by reducing
the energy magnitude to below the 1,500-J threshold; and (3) effec-
tive even when someone makes an unintentional human error
(Hallowell 2020). This definition aligns with the hierarchy of con-
trols by effectively mitigating risk primarily through elimination,
substitution, or engineering controls (NIOSH 2015). Administra-
tive controls such as training, warning signs, rules, and so forth
are not considered to be direct controls because they are vulnerable
to human error. Although some forms of specialty personal protec-
tive equipment such as fall arrest systems or fire-resistant (FR)
clothing meet the definition of direct control, many forms of gen-
eral PPE such as hard hats, gloves, and glasses do not meet this
definition because they are not targeted and do not mitigate
high-energy.

Predictive Modeling Techniques in Construction Safety

Safety researchers have used many statistical techniques to exam-
ine and demonstrate associative relationships between predictor
variables to safety outcomes. For example, Sarkar et al. (2020)
and Esmaeili et al. (2015b) used generalized linear models to pre-
dict the characteristics of injuries. Alexander et al. (2017b) used
multiple linear regression to test the predictive validity of human
factor precursors based on precursors; and Salas and Hallowell
(2016) used a combination of principal components analysis
and generalized linear modeling to test the predictive power of
safety leading indicators in explaining the variability in lagging
indicators.

In addition to utilizing regression analyses, machine learning
pipelines have been used for safety prediction, especially to analyze
intricate empirical data (Gondia et al. 2020; Liu and Tian 2019;
Shin 2019). Machine learning pipelines typically include a compre-
hensive suite of algorithms to make predictions. These algorithms
include simpler models such as linear regressions, as well as more-
complex and nonlinear algorithms. ML attempts approach the
prediction problems using both trending (regression) and pattern
recognition (clustering) in larger data sets.

Researchers have used ML to predict severity of construction ac-
cidents, injury type, energy type, and body part injured (Hallowell
et al. 2019; Kines 2001; Sarkar et al. 2020; Zhu et al. 2021); to
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detect the predictive trends for incidents affecting construction
workers (Choi et al. 2020; Zhu et al. 2021); and for risk analyses
and simulation (Tixier et al. 2016a). Additionally, several studies
have explored how ML may increase predictive power of leading
indicators (Costin et al. 2019; Poh et al. 2018; Wang and Razavi
2019). Some common algorithms used in ML pipelines in the
safety domain are regressions (Choi et al. 2020; Zhu et al. 2021),
decision trees (DTs) (Cheng et al. 2019; Shin 2019; Tixier et al.
2016a), random forests (RFs) (Choi et al. 2020; Guo et al. 2021;
He et al. 2021b), support vector machines (SVMs) (Sarkar et al.
2019; Zhang et al. 2015), multilayer perceptron (MLP), and neural
networks (NNs) (Sarkar et al. 2020, 2019; Zhu et al. 2021). The
quality of such models is assessed using evaluation metrics such
as accuracy, precision, recall, and so forth (Goh and Chua 2013;
Zhang et al. 2019). Zhu et al. (2021) evaluated the advantages
and disadvantages of each ML algorithm for their future effective
implementation while developing their model for safety incidents
(Zhu et al. 2021). The application of these machine learning meth-
ods in safety prediction provided researchers with a robust method
to extract actionable information from complex data sets without
introducing additional bias. With the growing data collection
and processing capacity, tree-based algorithms and unsupervised
machine learning have been chosen abundantly over linear models
in recent years.

The safety literature has found ML implementations to be useful
because ML helps to explore and fine-tune a suite of algorithms,
which achieves better predictive performance than individual mod-
els. A ML approach was chosen to examine the associations
between the predictor and predictand variables because it can facili-
tate a comprehensive statistical analysis while handling the multi-
dimensional, intricate, and noisy empirical data set.

Research Methods

This sections describes the research design, selection of indepen-
dent and outcome variables, data collection, preprocessing data,
model building using various algorithms, evaluation of the resultant

models, and application of the best models to achieve the research
objectives.

Research Design

This paper follows the stages of a typical ML pipeline as its overall
research design (Fig. 1). The main objective was to predict serious
injury and fatality exposure depending on workplace attributes of
business, project, and crew levels based on data that includes both
safety success and failure. Survey data were collected from con-
struction companies per the data collection strategy. Systematic
crew observations assessed SIF exposure and success given the
safeguards against high-energy hazards. Survey data were cleaned,
coded, and processed in preparation for predictive model building
using the chosen ML algorithms.

The priorities considered while selecting the ML algorithms
were (1) both linear and nonlinear model utilization, (2) informed
feature selection, and (3) ability to handle small-scale data sets
without overfitting. Feature importance information was provided
because the ML models in this study were created to be utilized. in
real-time safety management and monitoring systems as decision-
making support. In line with the ML algorithm considerations and
in alignment with previous research, logistic regression (LR), de-
cision trees, random forests, gradient boosted decision trees
(GBDT) and multilayer perceptron models were chosen to be de-
ployed. Area under receiver operating characteristic curve (AUC)
rates were used as the evaluation metric for the derived ML models.
The following subsections provide in-depth explanations of the
methodology.

Independent Variable Selection: Safety Predictors

Independent variables were selected from a preceding study which
investigated potential predictors at the crew, project, and business
levels (Oguz Erkal et al. 2021). In this study, researchers identified
40 critical potential predictors using the Delphi process with a
panel of experts representing the different key sectors of the con-
struction industry. For each potential predictor, multiple questions

Fig. 1. Overall research design.
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were designed to enable a valid collaborative assessment by the
supporting industry team. This step was critical for ensuring con-
sistency and internal validity. An independent survey tool was used
for data collection.

Business factors included leading indicator protocols, frontline
supervisor leadership training, investment in safety research and
development, intervention protocols, and so forth. Because busi-
ness factors tend to be stable over a longer period, the data on these
factors were collected only once during a 4-month data collection
period.

Project factors included frequency and attributes of job safety
orientations, presence of project manager, quality of supervisor,
weather conditions, and so forth. For some companies that do
not complete projects in the traditional sense, an option was added
to report in terms of geographical business unit. Although construc-
tion companies typically complete work on discrete projects (e.g., a
building or a dam), other construction-adjacent companies such as
power-generation and delivery companies use complete dispersed
work through functional business units that typically correspond to
a narrow geographical region (e.g., the Denver metropolitan area).
The project survey was designed to be filled out once for each
project or business unit during the data collection period.

Crew factors included crew size, duration of time that the crew
has worked together, staffing levels, and so forth. The crew survey
was designed to be filled out once per field visit of a crew perform-
ing a task by the field leader in charge (e.g., superintendent, fore-
man, and crew lead).

Outcome Variable Selection: HECA

One of the key objectives and intended contributions of this paper
was to build a predictive model that incorporates both success- and
failure-related data. As noted previously, the authors did not use
traditional outputs of prediction models such as fuzzy risk assess-
ments, incident rates, and so forth. An observation-based dependent
variable, high-energy controls assessment, was used in this study
(Oguz Erkal and Hallowell 2023). The HECA per observation was
recorded as binary assessment: success, or failure.

Data Collection Strategy

The data collection undertaken for this study yielded empirical data
collected from construction sites representing the different sectors
of the industry, including oil and gas, service and utility works,
industrial construction, heavy civil construction, and commercial
building construction. A total of 28 unique organizations collected
information from 74 projects and 698 crews between June and
September 2021. This was a particularly large effort because the
predictor and outcome variables were new, and therefore were
not collected automatically in existing safety management systems.
The partnership between the academic researchers and the industry
professionals was paramount for success.

To ensure valid and reliable data collection across sites and em-
ployers, points of contact from each organization responsible for
data collection were required to complete an introductory training
course in which the potential predictors were defined, all the survey
instruments were reviewed, and rules for collecting HECA obser-
vations were discussed. Although an approach with multiple practi-
tioners assisting with data collection is not ideal because it
compromises internal validity to some degree, it was a limitation
accepted by the authors to generate the voluminous data necessary
to build a predictive model. To enhance the internal validity, the
training on collecting data was delivered virtually by one individual

from the academic team throughout the process to ensure minimal
calibration errors and nonsystemic biases in data collection process.

The HECA assessment was facilitated using the form in Fig. 2.
When completing the form, the observer was required to (1) identify
all high-energy hazards present in the work task, and (2) identify
which high-energy hazards were mitigated by the presence of a di-
rect control. The observer was required to use 16 high-energy icons
and the strict definition of direct control (Albert et al. 2017;
Hallowell 2020; Tixier et al. 2018). If all high-energy hazards were
mitigated, the observation was marked as success, and if one or
more hazards did not have a corresponding direct control, the ob-
servation was marked as exposure. This binary assessment repre-
sented the outcome variable for the safety predictions.

Data Preparation

He data preprocessing process was composed of data cleaning,
feature engineering, and dependent variable projection to prepare
the data set for further analysis, feature selection, and ML model
training.

Data Cleaning and Transformations

To clean the data, a five-step process was followed: (1) handling of
missing data, and (2) cleaning no-variance independent variables,
(3) one-hot encoding of categorical variables, (4) numerical data
transformations, and (5) normalization of variables (Seger 2018;
Shehadeh et al. 2021). First, the independent variables that had
more than 20% of the data missing were removed from the data
set. Second, for variables that had less than 20% of data missing,
the missing entries were replaced with median values, and indepen-
dent variables that had no variance were removed from the data set.
Third, all categorical variables were one-hot encoded into separate
columns by converting the variables with multiple categorical val-
ues without a hierarchy or order of magnitude into separate binary
variables. Fourth, ordinal data on Likert scales were coded by
numerical means between 0 as a minimum and 1 as a maximum
(i.e., 2 on a 5-point Likert scale was coded as 0.25). Finally, all
continuous variables were normalized. As a result of the data clean-
ing and transformations process, all data were encoded into numeri-
cal variables that were normalized with no missing values.

Feature Engineering

New features in the independent variables space were created using
two strategies to increase predictive performance. Questions with
many categorical variables were summed into one new feature to
represent the total number of attributes included in the measured
predictor. Leading indicators at the business level is an example
for which the summation technique was used to present the total
number of leading indicators that the company tracks. Such fea-
tures were created to represent an overall summary of the predictor
in addition to individual categories. Second, selected independent
variables were divided to calculate ratios. For example, a new fea-
ture was designed to present the field management to worker ratio
(P2) at the project level by dividing the total number of field man-
agers by the number of workers.

The dependent variable, HECA, was generated using feature en-
gineering to create a binary metric. Accordingly, if the respondent
identified high-energy hazards but responded “No” to the existence
of direct controls, the instance was recorded as 1, exposure. If
the respondent did not identify high-energy hazards or if all the
high-energy hazards identified were mitigated by direct controls,
the instance was recorded as 0, success.
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Outcome Variable Projection

Businesses have multiple projects, and projects deploy multiple
crews. Therefore, business attributes apply to multiple projects,
and project attributes apply to multiple crews. This hierarchical
structure was used to connect the business and project attributes
in parallel with the outcome variable. Pursuant to data cleaning
and feature engineering stages, the outcome variable (i.e., depen-
dent variable) collected on the crew survey level was projected to
the independent variables collected in business and project surveys.
This was made possible using the consistent coding of businesses,
projects, and crews during data collection. After the dependent
variable was projected onto business- and project-related indepen-
dent variables, three unique data sets were created under each func-
tional unit sharing the same dependent variable, HECA. The three
data sets were used to create the ML models of business and crew
(Business), project and crew (Project), and crew [Crew (C)] data
sets. For example, Business A is working on Project AX, with
Crews AX-1 and AX-2. Crews AX-1 and AX-2 were observed
on site, and HECA data were collected. The resultant Crew data
set included only the attributes of Crews AX-1 and AX-2 and
HECA results. The Project data set included the attributes of Crews

AX-1 and AX-2 and Project AX, and HECA results. The Business
data set included the attributes of Crews AX-1 and AX-2 and
Business A, and HECA results.

Predictive Model Development

Understanding the Feature Space

A common first step in machine learning is exploring the latent
structure of the feature space. In this study, the feature space is
the collection of safety predictors (independent variables) in the
business, project, and crew levels for the given data set. This com-
monly is done via dimensionality reduction or analysis of embed-
ding spaces of self-supervised models. Here, t-distributed
stochastic neighbor embedding (TSNE) was used for visualizing
the data in two-dimensional (2D) space to identify outliers and to
gain insight into the linear separability of class labels (Van der
Maaten and Hinton 2008).

Crew Data set
For the Crew data set, TSNE was used to project the original data of
29 features into a two-dimensional space (Fig. 3). The learning of

Fig. 2. Survey section for HECA data collection. [Images reprinted with permission from Hallowell (2020).]
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the projected 2D variable was performed via minimization of the
divergence between the variable and the similarities between sam-
ples in the original feature space. This projection demonstrated that
there were outliers that might affect the performance of a model. To
remove outliers, an isolation forest with 10 estimators was used to
compute an anomaly score. This method can be effectively used
when there is a large number of variables that might contain irrel-
evant features (Liu et al. 2012). Specifically, the implementation of
isolation forest in scikit-learn (version 1.0.2) was used. To compute
the anomaly score, the average length of the path from the root of
the trees to the corresponding sample node was calculated. Six sam-
ples with scores lower than−0.12were considered to be anomalous
and hence were excluded.

TSNE projection demonstrated that there were no clearly iso-
lated samples clusters with different labels. Thus, it showed that
linear models would have modest performance, and classification
models that could learn complex boundaries would perform better.
A disadvantage of more-complex models is that they require larger
data sets; however this drawback could be alleviated using data
augmentation.

Business and Project Data
When business or project features were combined with crew fea-
tures to generate Business and Project data sets, the TSNE projec-
tion on 2D space and isolation forest did not yield clear outliers.
However, evaluating the TSNE projections in Fig. 7 indicated that

there were clusters of exposure datapoints in both projections,
which signified the existence of a predictive pattern. Multiple al-
gorithms with different strengths and weaknesses were tested in
parallel to produce models with the best predictive performance
for this data set.

Machine Learning Models

Machine learning models were developed to test the relationship
between the independent business, project, and crew variables
and the binary HECA outcome variable. ML models were devel-
oped separately for the crew layer first to analyze the features clos-
est to the work. The most important features chosen using the crew
model were merged with the business and project layers separately
to identify the additional information that could be provided using
the business and project feature space. The use of three models was
chosen strategically to provide actionable information to different
functional levels of the organization that may or may not have com-
plete information about other hierarchical levels. For example, a
project manager could use the final Project model to make predic-
tions without entering data related to business features. The HECA
metric results were recorded as exposure (Y ¼ 1) and success
(Y ¼ 0). Logistic regression (Karacasu et al. 2014; Zhu et al.
2021), decision trees (Tixier et al. 2016a; Zhu et al. 2021), gradient
boosted decision trees (He et al. 2021b), random forests (Breiman
2001), and multilayer perceptron (He et al. 2021a; Zhu et al. 2021)

Fig. 3. TSNE projection (before and after anomaly amputation) and isolation forest for Crew data.
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models were tested independently for predictive model develop-
ment. MLP was chosen specifically to better handle the expected
noise in the data set while approximating complex nonlinear rela-
tionships in the multidimensional feature space (Zhu et al. 2021).
All models were developed, tested, and evaluated using the scikit-
learn and Keras version 2.11 packages for Python 3.8.

Data Handling

Training, Cross-Validation, and Test Sets
All data sets were split into 80% training samples and 20% test
samples. The training samples were subjected to a fivefold cross
validation, in which the original data set was split into five different
parts, and iterations used one part for validation and the other four
parts for training. The performance estimate was taken as the aver-
age performance over the five partitions.

Data Augmentation
Whereas neural networks require larger data sets to train, smaller
data sets require the utilization of shallow MLP structures with a
low number of nodes. Data augmentation to increase the training
set is a common practice, and noise was added to the data set to
increase the number of samples (Shawky et al. 2020). For the MLP
models that required larger data sets, the sample space was aug-
mented by adding randomness (Leung et al. 2010). For each feature
f, the sorted unique values of feature were used to calculate the
gaps between consecutive values, and the smallest gap was used
to offset the values randomly. For example, for a binary variable
f: f1; f2; : : : ; fn, two unique values could be calculated (0,1),
and the gap is computed as 1. Because this is the only gap, the
smallest gap also is 1, denoted Gf. To augment a sample xi by add-
ing random values to each feature, the value added to feature fi is in
the interval [−0.25 × Gf; 0.25 ×Gf]. Practically, the model was
forced to assign the label to a region of the feature space instead
of to a specific point in the space to help construct a clear margin
between close samples from different class labels (regularization)
(Krogh and Hertz 1991). Data augmentation was applied to the
training data set with an augmentation factor of 20 conserving
the proportion of class labels across the data splits, and the remain-
ing validation and test data were kept separate.

Feature Selection
Choosing the right features was critical for the resultant perfor-
mance of the models generated (Poh et al. 2018). It is an essential
part of preprocessing to increase the predictive power of resultant
ML models (Soibelman and Kim 2002; Son et al. 2012; Witten and

Frank 2002). For feature selection in the crew data set, the aug-
mented data were used to perform a decision tree classification.
Decision trees were built by creating splits on features to obtain
the highest information gain and the least possible entropy in child
nodes. To estimate such features in the data set, 100,000 random
DTs were built on the training set. A histogram was plotted with 20
bins showing the total number of features chosen by the DT ensem-
ble. The resultant bins formed clusters showing the number of times
each feature was selected for a split. All features that belonged to
the first cluster of bins, that were not chosen frequently by the DT
simulations as important features, were excluded to reduce the
number of features. The feature importance values were calculated
by averaging the feature importance values over the DT ensemble.

Fine-Tuning and Testing

Tuning and testing the models involved finding the best parameters
for each machine learning model (depth of the tree, activation func-
tion, number of trees, and so forth). A grid search technique was
used for hyperparameter selection. Using the validation sets, this
process selected the parameters that yielded the best performance
on the validation set. Random multiple iterations were performed to
reduce the exponentially large hyperparameter space and constrain
search regions, reducing the search space. When the best perform-
ing hyperparameters were chosen, the performance of the model
was evaluated using the test data (20% of the original data).
The test samples were used mainly to check if the model general-
ized well to unseen samples. This process is demonstrated in Fig. 4.

For each of the explored ML methods, the hyperparameters that
were modified from the default settings of the scikit-learn package
are provided in Table 1.

Model Evaluation

Pursuant to the preprocessing, all three data sets had a class imbal-
ance issue in the dependent variable, because there were only
16.18% exposure cases in the crew data set. Such a class imbalance
may impair the learning of ML algorithms from underrepresented
classes (Poh et al. 2018). The class imbalance could be handled
without using any data manipulation techniques to augment the
underrepresented class. To do so, the model evaluation metric must
be chosen carefully.

Binary classification models generally are evaluated in terms of
their predictive power to accurately predict true positives (TPs),
true negatives (TNs), false positives (FPs), and false negatives
(FNs). However, reporting the accuracy of a model could be mis-
leading when the class distribution is skewed (Choi et al. 2020).

Fig. 4. Parameter tuning and testing process.
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In a skewed data set, such as the ones that were collected in this
study, even predictions resulting from a majority vote classifier can
produce high accuracy levels without creating any intelligence as-
sociated with the independent variables.

A better evaluation metric for ML models using skewed data
sets is the area under the receiver operating characteristic curves
(AUC). Operating characteristic curves are the visualization of true
positive and false positive rates on the vertical and horizontal axis,
respectively (Fawcett 2006). The performance of the evaluated
model increases as the reported AUC approaches 1.00. AUC
can be interpreted as the probability that a classifier correctly de-
termines which sample belongs to which label. As a result, AUC
may be evaluated as an accuracy approximation for an imbalanced
data set. AUC scores were chosen to fairly evaluate and choose the
best performing model. Choi et al. (2020) defined an AUC score pf
0.70–0.80 as fair and of 0.80–0.90 as good. The goal of this paper
was to achieve at least 0.7 AUC, which is the common minimum
threshold to prove that a model can detect some dependency be-
tween the features and the labels.

Results and Interpretation

In this section, the outcomes of the designed machine learning
pipeline are presented with generated the best model that predicts
HECA from the crew, project, and business features. The hyper-
parameters were determined from the fine-tuning process for rep-
licability. Model evaluation results are provided to compare the
models’ performance.

As a result of preprocessing process, the resultant data set in-
cluded 692 binary HECA observations (580 success observations,
and 112 exposure observations) as the dependent variable; and 29
crew features, 137 project features, and 111 business features as
independent variables that were prepared for further analysis.

Feature Selection and Importance

For all data sets, the feature selection method was based on decision
tree classification. As a result, feature importance for Crew, Project,
and Business data sets was calculated. Twelve features from the
crew feature space were selected for the resultant model. Twenty
features each from the project and business feature spaces were

selected for the resultant models. Ten of these features in each
model were unique to the Project and Business data sets. Feature
selection results are shown in Fig. 5.

Model Evaluation Results

The performance of the average model from each machine learning
method was reported using AUC scores (Table 2). The average
models were reported to ensure the reliability and generalizability
of the resultant models.

MLP models outperformed all other models and had higher
stability throughout the batch training. Random forest did not have
significantly improved performance over that of decision tree. RF
usually reduces overfitting, but for the crew variables, this tendency
of reducing variance prevented it from capturing information rel-
evant to HECA.

Although it is difficult to explain the impact of MLP architecture
and the overall learning in neural networks, the authors attempt to
provide insight into the developed model using step-by-step analy-
sis of model generation. During the training of the MLP model
(Fig. 6), the AUC scores at the end of each training epoch was pro-
vided. The learning curves were presented for the augmented train-
ing set, the nonaugmented validation set, and for the nonaugmented
test set. The usual trend in deep learning starts with a noticeable
improvement of the objective on all partitions, followed by an over-
fitting regime in which the training score improves but it decreases
on evaluation sets. However, it was noticed that the AUC on the
training set started to decrease as well after a certain threshold.
Per the authors interpretation, as the training AUC score decreased,
the model converged to a state that would yield similar results to the
other models (AUC < 0.70).

Postprocessing

For the postprocessing phase, the TSNE projections were used with
an overlay of nonlinear decision boundaries determined by the se-
lected MLP and DT models to provide more insight into each
model. In other words, the risk probability of exposure was calcu-
lated on the data set and demonstrated using linear interpolation to
represent the decision surface on the TSNE space (Fig. 7).

The MLP decision boundary was smoother and captured
smaller clusters of labels that were defined as exposure (Fig. 7).

Table 1. Fine-tuning results for all models

ML model Crew data set Project data set Business data set

LR Penalty = ridge Penalty = ridge Penalty = lasso
C ¼ 0.001 C ¼ 0.001 C ¼ 0.1
Solver = liblinear Solver = liblinear Solver = saga

DT max_depth = 17 max_depth = 10 max_depth = 13
Criterion = Gini Criterion = Gini Criterion = entropy
max_features = 9 max_features = 10 max_features = log2
min_samples_split = 2 min_samples_split = 2 min_samples_split = 15

GBDT N_estimators = 700 n_estimators =500 n_estimators = 400
learning_rate = 0.46 learning_rate = 0.46 learning_rate = 0.46

RF n_estimators = 10 n_estimators = 25 n_estimators = 20
max_depth = none max_depth = 6 max_depth = 5

— min_samples_split = 3 min_samples_split = 4
— max_features = 0.1 max_features = log2

MLP Layers = linear(number of units,
activation): linear(64, tanh) dropout (0.1);
linear(48, tanh)

Layers = linear(number of units,
activation): linear(64, tanh) dropout (0.1);
linear(48, tanh)

Layers = linear(number of units,
activation): linear(64, tanh) dropout (0.1);
linear(48, tanh)

dropout (0.1); linear(32, tanh) dropout (0.1); linear(32, tanh) dropout (0.1); linear(32, tanh)
dropout (0.1); linear (1, sigmoid); all layers
use L1 (alpha ¼ 0.015) regularization

dropout (0.1); linear (1, sigmoid); all layers
use L1 (alpha ¼ 0.015) regularization

dropout (0.1); linear (1, sigmoid); all layers
use L1 (alpha ¼ 0.015) regularization
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Fig. 5. Feature importance for crew, project, and business variables (in alphabetical order).
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Conversely, DT’s decision boundary had discrete separation levels
which prevented the learned decision boundary from generalizing
to unseen samples. Although MLP also eventually would converge
to a similar sharper boundary, as is seen in the learning curves in
Fig. 6, the authors managed to choose an optimum model by
tracking the validation scores and selecting a model before this con-
vergence was reached. It is expected that a decision surface with an
abrupt transition between the different exposure levels might not
generalize sufficiently, because TSNE already displayed a low
separability between samples from different classes.

Discussion and Key Takeaways

The predictive models presented here offer robust predictions of a
new safety variable, HECA. The separation of predictors into crew,
project, and business levels was used strategically to inform differ-
ent functional units within an organization regarding their decision-
making processes related to safety. The ML pipeline revealed the
key predictors.
• Business- and project-level factors are critical for holistic safety

predictions. Crew-level features alone do not yield a high-
performing prediction model (the maximum average AUC score
was 0.69); however, they create a robust baseline. The models
were highly predictive only when business and project features
were added, resulting in an AUC score of 79%. By adding busi-
ness and project predictors to the crew predictors, probability of
HECA exposures may be accurately predicted. Practitioners
may use this intelligence not only to estimate their risk of ex-
posure, but also to prioritize their improvement efforts using
highly ranked factors.

• Crew member experience working together and supervisors ex-
perience supervising the crew is crucial. In all models, the time

that the crew has worked together and supervisor experience
with the crew were highly predictive and influential. This
was followed by the number of frontline workers under the di-
rection of the supervisor and the extent to which the supervisor
is clear about their team’s role. Collectively, these factors high-
light the critical role of supervision and crew connectivity. For
example, smaller crews with more experience with each other
and with their supervisor tend to perform better than their coun-
terparts. Although this may seem intuitive, the fact that this
was the strongest trend among approximately 250 features is
surprising.

• Project factors such as project scale, crew size, and leading
indicators matter. Although crew features have the highest
importance, project features related to project scale are highly
influential. For example, the total number of workers, total num-
ber of worker hours, average crew size, and size of the project
were all significant in the HECA predictions. These project fea-
tures were followed by the average crew size, the existence of
drug tests, and the maturity of safety orientations. Other features
at the project level were percentage of the dedicated equipment
maintenance budget and importance of references and interview
in prequalifying contractors. In light of these results, industry
professionals are encouraged to review their prequalification
strategies that often depend on injury rates (Lofquist 2010),
and consider developing processes to include more contextual
factors related to the project demographics and the way that the
contractor organizes their work.

• Businesses should consider allocating resources for leadership
training to frontline supervisors. Among the business factors,
the impact of providing leadership training to the frontline
supervisors, which is a business feature, was ranked second;
crew’s experience working together, a crew feature, was ranked
first. The quality indicators related to the leadership training also
ranked highly. This finding warrants efforts by academics and
industry professionals to develop and implement effective lead-
ership training programs for frontline supervisors.

• Critical business factors include leading and lagging indicators.
TRIR has a place in SIF exposure predictions. Supporting the
intuition that a balanced approach is warranted to create more
robust statistical models for SIF risk prediction, the previous
year’s TRIR is predictive of future exposure. Other features
at the business level were having a leading indicator program

Table 2. AUC scores for crew, project, and business models

ML model Crew data set Project data set Business data set

LR 0.55 0.58 0.65
DT 0.62 0.60 0.61
GBDT 0.61 0.67 0.65
RF 0.56 0.61 0.62
MLP 0.69 0.79 0.79
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Fig. 6. Learning curves for the MLP models for Crew, Project, and Business data sets.
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that monitors stop works and observations, monitoring the
supervisor to worker ratio of contractors, and evaluating the
performance of trainees after they have received leadership
training.
Compared with the previous literature, the findings had signifi-

cant overlap among important predictors of SIFs such as leading
indicators, job safety assessments (JSAs), site supervision, and re-
cordable rates. Despite this overlap, the predictive model uncovered
new predictors such as equipment repair funds, leadership training
for frontline supervisors, importance given to tracking observa-
tions, and the total number of high-energy hazards in the workspace
and of production responsibilities of the supervisor. Facilitated
by project- and business-level features, predictors related to the
prequalification and orientation programs were determined in
order to address higher-level risks that have consequences at the
crew level.

Conclusions, Limitations, and Future Research

This study made two key advancements in methodology: (1) a fo-
cus on predicting success and exposure conditions and adherence to
strict operational definitions; and (2) the collection of a novel and
empirical data set that included business-, project-, and crew-level
factors. State-of-the-art ML algorithms were applied to the data set
(i.e., LR, DT, GBDT, RF, and MLP), and MLP performed the best,
with AUC scores of 0.79, 0.79, and 0.69 for business, project, and
crew levels, respectively. The knowledge gained revealed that,
among over 300 factors that were hypothesized to be predictive,
a small subset has strong predictive capacity, and therefore deserve
most attention.

Construction professionals long have desired robust safety pre-
dictions. Despite progress with leading indicators, climate surveys,
precursor analysis, and risk assessments, most existing predictive

Fig. 7. MLP and DT model decision surface comparisons for Business and Project data.
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models rely solely on injury outcomes, which makes the assess-
ment of likelihood of injury almost impossible (De Finetti et al.
2017). By predicting SIF conditions instead of incidents, and in-
cluding operational definitions of the dependent variable, this study
offers a robust predictive model that enables proactive decision
making. Two areas of significant improvement were (1) inclusion
of safety success along with exposure using a monitoring metric as
dependent variable, and (2) incorporation of predictors from differ-
ent hierarchical levels of an organization.
1. This study suggests a shift from trying to predict very rare and

random events to predicting the probability of success or expo-
sure conditions that occur continuously during active work.
Using this more-stable prediction approach, researchers may
test the effectiveness of their interventions in the short term,
and professionals may be more proactive in addressing life-
threatening conditions.

2. Specifically, the feature importance of each attribute may be
used to guide professionals regarding what to monitor and pri-
oritize. Moreover, the categorization of predictors into business,
project, and crew levels helps organizations to assign efforts to
different functional groups. For example, although organiza-
tions might not be able to make changes in their business struc-
ture over a short period, they might be able to implement highly
impactful project- or crew-level interventions. Moreover, this
structure can be used to explain how business- or project-level
decisions impact the crew. The feature importance of each attrib-
ute may be used to guide professionals regarding what to mon-
itor and prioritize.
Finally, this study makes important strides toward probabilistic

predictions for SIF risk prediction. The ML pipeline and approach
could be used by academics to generate and test their ownMLmod-
els. A similar approach also could be used for planning and testing
interventions, creating interdependent network approaches, strat-
egizing change management, and generating innovation adoption
strategies for on-site implementations. Moreover, this study dem-
onstrated the implementation of recent ML techniques such as data
augmentation, neural networks, and embedding space representa-
tions for SIF prevention. The models created were adjusted due to
the unique data and analysis challenges and constraints to advance
the application of automation methods in construction safety.

Although the sample data set collected in this study was unique
and sufficient to facilitate analysis as a proof-of-concept, the major
limitation of this study was the sample size. Because the database
included only information submitted by 28 construction companies
in the United States and Canada, the results cannot be generalized
to a larger population. This limits the external validity of the results,
and calls for future researchers to collect data at scale. Furthermore,
as with any other research that depends on survey data, the col-
lected information is subjected to potential cognitive biases. Even
though the authors took measures to mitigate such biases using
training and clear guidelines, respondent and research biases still
are possible.

The crew-, project-, and business-related features chosen using
the ML pipeline were incorporated into the machine learning model
in parallel without any built-in or predetermined relationships.
Although the data preparation and feature selection methods pre-
vented the inclusion of highly correlated features within the result-
ant model, this decision might have imposed a limitation due to the
exclusion of potential interdependencies or causal relationships be-
tween features in the model. Future research could explore such
interrelationships to embed related underlying safety knowledge
within the predictive models for increased performance.

This paper collected data related to a new outcome variable,
HECA. Although HECA offers great promise as a monitoring

metric that can generate robust and large data sets that can facilitate
more advanced automation methods in making predictions to pre-
vent SIFs, its association with traditional injury rates are unknown.
Future researchers are encouraged to collect data over time for both
HECA and injury rates to compare their individual attributes and
study their potential correlations. Furthermore, this research piloted
HECA data collection in a limited binary form (as discrete condi-
tions of success and exposure). Because this was the first time that
HECA has been deployed in an empirical study, the assessments
were considered as binary for each observation to ensure that
the concept could be applied consistently. As this concept matures
and is understood better, future researchers may consider collecting
and analyzing HECA data as a continuous variable by recording
individual high-energy hazards and their corresponding direct con-
trols. Although this approach would be more complex, it would
capture a more detailed representation of safety conditions.

Future research could address these issues by automation of site
assessments and data collection. With automated site data collec-
tion systems, future researchers will be able to generate larger data
sets from a larger number of companies while fully eliminating
cognitive biases due to dependence on survey data. Because rel-
evant research already has explored automated hazard recognition
systems (Teizer and Cheng 2015), the prospect of developing a
comprehensive high-energy and direct controls-based automated
risk recognition system is critical in SIF prevention. In parallel with
the ever-increasing data processing technology, and inspired by
interdisciplinary research in traffic safety (Karacasu et al. 2014)
and aviation (Yeoum and Lee 2013), opportunity for automation
should continue to be recognized by researchers in construction
(Choi et al. 2020; Tixier et al. 2016a). The shift toward using larger
data sets will offer more predictive power and will allow the uti-
lization of more-complex machine learning methods that could be
used to make construction sites safer for workers.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.

Acknowledgments

The authors thank the Construction Safety Research Alliance for
providing support for this research, and the experts who partici-
pated in the study for their dedication, creativity, and insight.

References

Albert, A., M. R. Hallowell, and B. M. Kleiner. 2014. “Experimental field
testing of a real-time construction hazard identification and transmis-
sion technique.” Construct. Manage. Econ. 32 (10): 1000–1016.
https://doi.org/10.1080/01446193.2014.929721.

Albert, A., M. R. Hallowell, M. Skaggs, and B. Kleiner. 2017. “Empirical
measurement and improvement of hazard recognition skill.” Saf. Sci.
93 (Mar): 1–8. https://doi.org/10.1016/j.ssci.2016.11.007.

Alexander, D., M. Hallowell, and J. Gambatese. 2017a. “Precursors of con-
struction fatalities. I: Iterative experiment to test the predictive validity
of human judgment.” J. Constr. Eng. Manage. 143 (7): 1–12. https://doi
.org/10.1061/(ASCE)CO.1943-7862.0001304.

Alexander, D., M. Hallowell, and J. Gambatese. 2017b. “Precursors of
construction fatalities. II: Predictive modeling and empirical valida-
tion.” J. Constr. Eng. Manage. 143 (7): 1–12. https://doi.org/10.1061
/(ASCE)CO.1943-7862.0001297.

© ASCE 04023169-13 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2024, 150(3): 04023169 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

72
.6

5.
22

.1
73

 o
n 

01
/2

0/
24

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1080/01446193.2014.929721
https://doi.org/10.1016/j.ssci.2016.11.007
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001304
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001304
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001297
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001297


Alruqi, W. M., and M. R. Hallowell. 2019. “Critical success factors for
construction safety: Review and meta-analysis of safety leading indica-
tors.” J. Constr. Eng. Manage. 145 (3): 1547–1556. https://doi.org/10
.1061/(ASCE)CO.1943-7862.0001626.

Alruqi, W. M., M. R. Hallowell, and U. Techera. 2018. “Safety climate
dimensions and their relationship to construction safety performance:
A meta-analytic review.” Saf. Sci. 109 (5): 165–173. https://doi.org/10
.1016/j.ssci.2018.05.019.

Baradan, S., and M. A. Usman. 2006. “Comparative injury and fatality risk
analysis of building trade.” J. Constr. Eng. Manage. 132 (5): 533–539.
https://doi.org/10.1061/(ASCE)0733-9364(2006)132:5(533).

Breiman, L. 2001. “Random forests.”Mach. Learn. 45 (Oct): 5–32. https://
doi.org/10.1023/A:1010933404324.

Brown, S., W. Harris, R. D. Brooks, and X. S. Dong. 2021. “Fatal
injury trends in the construction industry.” Accessed January 15,
2023. https://www.cpwr.com/wp-content/uploads/DataBulletin-February
-2021.pdf.

Cheng, J., G. Li, and X. Chen. 2019. “Research on travel time prediction
model of freeway based on gradient boosting decision tree.” IEEE
Access 7 (Dec): 7466–7480. https://doi.org/10.1109/ACCESS.2018
.2886549.

Choe, S., and F. Leite. 2016. “Assessing safety risk among different
construction trades: Quantitative approach.” J. Constr. Eng. Manage.
143 (5): 04016133. https://doi.org/10.1061/(ASCE)CO.1943-7862
.0001237.

Choi, J., B. Gu, S. Chin, and J. S. Lee. 2020. “Machine learning predictive
model based on national data for fatal accidents of construction
workers.” Autom. Constr. 110 (Feb): 102974. https://doi.org/10.1016/j
.autcon.2019.102974.

Costin, A., A. Wehle, and A. Adibfar. 2019. “Leading indicators—A
conceptual IoT-based framework to produce active leading indicators
for construction safety.” Safety 5 (4): 86. https://doi.org/10.3390
/safety5040086.

De Finetti, B., A. Machì, and A. F. M. Smith. 2017. Theory of probability:
A critical introductory treatment. Chichester, UK: Wiley.

Dekker, S., and C. Pitzer. 2016. “Examining the asymptote in safety
progress: A literature review.” Int. J. Occup. Saf. Ergon. 22 (1): 57–65.
https://doi.org/10.1080/10803548.2015.1112104.

Esmaeili, B., M. R. Hallowell, and B. Rajagopalan. 2015a. “Attribute-based
safety risk assessment. I: Analysis at the fundamental level.” J. Constr.
Eng. Manage. 141 (8): 04015021. https://doi.org/10.1061/(ASCE)CO
.1943-7862.0000980.

Esmaeili, B., M. R. Hallowell, and B. Rajagopalan. 2015b. “Attribute-based
safety risk assessment. II: Predicting safety outcomes using generalized
linear models.” J. Constr. Eng. Manage. 141 (8): 1–11. https://doi.org
/10.1061/(ASCE)CO.1943-7862.0000981.

Fawcett, T. 2006. “An introduction to ROC analysis.” Pattern Re-
cognit. Lett. 27 (8): 861–874. https://doi.org/10.1016/j.patrec.2005
.10.010.

Goh, Y. M., and D. Chua. 2013. “Neural network analysis of construction
safety management systems: A case study in Singapore.” Construct.
Manage. Econ. 31 (5): 460–470. https://doi.org/10.1080/01446193
.2013.797095.

Gondia, A., A. Siam, W. El-Dakhakhni, and A. H. Nassar. 2020. “Machine
learning algorithms for construction projects delay risk prediction.”
J. Constr. Eng. Manage. 146 (1): 04019085. https://doi.org/10.1061
/(ASCE)CO.1943-7862.0001736.

Guo, B. H. W., and T. W. Yiu. 2016. “Developing leading indicators to
monitor the safety conditions of construction projects.” J. Manage.
Eng. 32 (1): 04015016. https://doi.org/10.1061/(ASCE)ME.1943-5479
.0000376.

Guo, B. H. W., T. W. Yiu, V. A. González, and Y. M. Goh. 2017. “Using a
pressure-state-practice model to develop safety leading indicators for
construction projects.” J. Constr. Eng. Manage. 143 (2): 04016092.
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001218.

Guo, R., D. Fu, and G. Sollazzo. 2021. “An ensemble learning model for
asphalt pavement performance prediction based on gradient boosting
decision tree.” Int. J. Pavement Eng. 23 (10): 3633–3646. https://doi
.org/10.1080/10298436.2021.1910825.

Hallowell, M. 2020. “Safety classification and learning (SCL) model.”
Edison Electric Insitute. Accessed January 15, 2023. https://www.eei
.org/-/media/Project/EEI/Documents/Issues-and-Policy/Power-to-Prevent
-SIF/eeiSCLmodel.pdf?la=en&hash=4E03097C0292F52CB4FA186D0D
8CE11876032836.

Hallowell, M., S. Bhandari, and W. Alruqi. 2019. “Methods of safety pre-
diction: Analysis and integration of risk assessment, leading indicators,
precursor analysis, and safety climate.” Construct. Manage. Econ.
38 (4): 308–321. https://doi.org/10.1080/01446193.2019.1598566.

Hallowell, M., M. Quashne, R. Salas, B. MacLean, and E. Quinn. 2021.
“The statistical invalidity of TRIR as a measure of safety performance.”
Prof. Saf. 66 (4): 28–34.

Hallowell, M. R., D. Alexander, and J. A. Gambatese. 2017. “Energy-based
safety risk assessment: Does magnitude and intensity of energy predict
injury severity?” Construct. Manage. Econ. 35 (1–2): 64–77. https://doi
.org/10.1080/01446193.2016.1274418.

He, X., K. Zhao, and X. Chu. 2021a. “AutoML: A survey of the state-of-
the-art.” Knowl.-Based Syst. 212 (Jan): 106622. https://doi.org/10.1016
/j.knosys.2020.106622.

He, Z., D. J. Armaghani, M. Masoumnezhad, M. Khandelwal, J. Zhou, and
B. R. Murlidhar. 2021b. “A combination of expert-based system and
advanced decision-tree algorithms to predict air-overpressure resulting
from quarry blasting.” Nat. Resour. Res. 30 (2): 1889–1903. https://doi
.org/10.1007/s11053-020-09773-6.

Hinze, J., S. Thurman, and A. Wehle. 2013. “Leading indicators of con-
struction safety performance.” Saf. Sci. 51 (1): 23–28. https://doi.org/10
.1016/j.ssci.2012.05.016.

Hollnagel, E. 2014. “Is safety a subject for science?” Saf. Sci. 67 (Aug):
21–24. https://doi.org/10.1016/j.ssci.2013.07.025.

Hollnagel, E. 2015. “From safety-I to safety-II: A white paper.” Accessed
January 15, 2023. https://www.england.nhs.uk/signuptosafety/wp
-content/uploads/sites/16/2015/10/safety-1-safety-2-whte-papr.pdf.

Hopkins, A. 2009. “Thinking about process safety indicators.” Saf. Sci.
47 (4): 508–510. https://doi.org/10.1016/j.ssci.2007.12.006.

Karacasu, M., B. Ergül, and A. A. Yavuz. 2014. “Estimating the causes of
traffic accidents using logistic regression and discriminant analysis.”
Int. J. Inj. Control Saf. Promot. 21 (4): 305–313. https://doi.org/10
.1080/17457300.2013.815632.

Kines, P. 2001. “Occupational injury risk assessment using injury severity
odds ratios: Male falls from heights in the Danish construction industry,
1993-1999.” Hum. Ecol. Risk Assess. 7 (7): 1929–1943. https://doi.org
/10.1080/20018091095492.

Krogh, A., and J. A. Hertz. 1991. “A simple weight decay can improve
generalization.” In Vol. 4 of Advances in neural information processing
systems. San Mateo, CA: Morgan Kaufmann.

Leung, C. S., J. Sum, and S. K. Mak. 2010. “Generalization error of faulty
MLPs with weight decay regularizer.” In Proc., Int. Conf. on Neural
Information Processing, 160–167. Berlin: Springer.

Lingard, H., M. Hallowell, R. Salas, and P. Pirzadeh. 2017. “Leading or
lagging? Temporal analysis of safety indicators on a large infrastructure
construction project.” Saf. Sci. 91 (Jan): 206–220. https://doi.org/10
.1016/j.ssci.2016.08.020.

Liu, F. T., K. M. Ting, and Z. H. Zhou. 2012. “Isolation-based anomaly
detection.” ACM Trans. Knowl. Discovery Data 6 (1): 1–39. https://doi
.org/10.1145/2133360.2133363.

Liu, H., and G. Tian. 2019. “Building engineering safety risk assessment
and early warning mechanism construction based on distributed ma-
chine learning algorithm.” Saf. Sci. 120 (Dec): 764–771. https://doi
.org/10.1016/j.ssci.2019.08.022.

Lofquist, E. A. 2010. “The art of measuring nothing: The paradox of meas-
uring safety in a changing civil aviation industry using traditional safety
metrics.” Saf. Sci. 48 (10): 1520–1529. https://doi.org/10.1016/j.ssci
.2010.05.006.

NIOSH (The National Institute for Occupational Safety and Health). 2015.
“Hierarchy of controls.”Accessed August 1, 2022. https://www.cdc.gov
/niosh/topics/hierarchy/default.html.

Oguz Erkal, E. D., and M. R. Hallowell. 2023. “Moving beyond TRIR:
Measuring and monitoring safety performance with high-energy control
assessments.” Prof. Saf. 68 (5): 26–35.

© ASCE 04023169-14 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2024, 150(3): 04023169 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

72
.6

5.
22

.1
73

 o
n 

01
/2

0/
24

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001626
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001626
https://doi.org/10.1016/j.ssci.2018.05.019
https://doi.org/10.1016/j.ssci.2018.05.019
https://doi.org/10.1061/(ASCE)0733-9364(2006)132:5(533)
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.cpwr.com/wp-content/uploads/DataBulletin-February-2021.pdf
https://www.cpwr.com/wp-content/uploads/DataBulletin-February-2021.pdf
https://doi.org/10.1109/ACCESS.2018.2886549
https://doi.org/10.1109/ACCESS.2018.2886549
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001237
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001237
https://doi.org/10.1016/j.autcon.2019.102974
https://doi.org/10.1016/j.autcon.2019.102974
https://doi.org/10.3390/safety5040086
https://doi.org/10.3390/safety5040086
https://doi.org/10.1080/10803548.2015.1112104
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000980
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000980
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000981
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000981
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1080/01446193.2013.797095
https://doi.org/10.1080/01446193.2013.797095
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001736
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001736
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000376
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000376
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001218
https://doi.org/10.1080/10298436.2021.1910825
https://doi.org/10.1080/10298436.2021.1910825
https://www.eei.org/-/media/Project/EEI/Documents/Issues-and-Policy/Power-to-Prevent-SIF/eeiSCLmodel.pdf?la=en&amp;hash=4E03097C0292F52CB4FA186D0D8CE11876032836
https://www.eei.org/-/media/Project/EEI/Documents/Issues-and-Policy/Power-to-Prevent-SIF/eeiSCLmodel.pdf?la=en&amp;hash=4E03097C0292F52CB4FA186D0D8CE11876032836
https://www.eei.org/-/media/Project/EEI/Documents/Issues-and-Policy/Power-to-Prevent-SIF/eeiSCLmodel.pdf?la=en&amp;hash=4E03097C0292F52CB4FA186D0D8CE11876032836
https://www.eei.org/-/media/Project/EEI/Documents/Issues-and-Policy/Power-to-Prevent-SIF/eeiSCLmodel.pdf?la=en&amp;hash=4E03097C0292F52CB4FA186D0D8CE11876032836
https://doi.org/10.1080/01446193.2019.1598566
https://doi.org/10.1080/01446193.2016.1274418
https://doi.org/10.1080/01446193.2016.1274418
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1007/s11053-020-09773-6
https://doi.org/10.1007/s11053-020-09773-6
https://doi.org/10.1016/j.ssci.2012.05.016
https://doi.org/10.1016/j.ssci.2012.05.016
https://doi.org/10.1016/j.ssci.2013.07.025
https://www.england.nhs.uk/signuptosafety/wp-content/uploads/sites/16/2015/10/safety-1-safety-2-whte-papr.pdf
https://www.england.nhs.uk/signuptosafety/wp-content/uploads/sites/16/2015/10/safety-1-safety-2-whte-papr.pdf
https://doi.org/10.1016/j.ssci.2007.12.006
https://doi.org/10.1080/17457300.2013.815632
https://doi.org/10.1080/17457300.2013.815632
https://doi.org/10.1080/20018091095492
https://doi.org/10.1080/20018091095492
https://doi.org/10.1016/j.ssci.2016.08.020
https://doi.org/10.1016/j.ssci.2016.08.020
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1016/j.ssci.2019.08.022
https://doi.org/10.1016/j.ssci.2019.08.022
https://doi.org/10.1016/j.ssci.2010.05.006
https://doi.org/10.1016/j.ssci.2010.05.006
https://www.cdc.gov/niosh/topics/hierarchy/default.html
https://www.cdc.gov/niosh/topics/hierarchy/default.html


Oguz Erkal, E. D., M. R. Hallowell, and S. Bhandari. 2021. “Practical
assessment of potential predictors of serious injuries and fatalities in
construction.” J. Constr. Eng. Manage. 147 (10): 04021129. https://doi
.org/10.1061/(ASCE)CO.1943-7862.0002146.

Oguz Erkal, E. D., M. R. Hallowell, and S. Bhandari. 2023. “Formal
evaluation of construction safety performance metrics and a case for
a balanced approach.” J. Saf. Res. 85 (Jun): 380–390. https://doi.org/10
.1016/j.jsr.2023.04.005.

Poh, C. Q. X., C. U. Ubeynarayana, and Y. M. Goh. 2018. “Safety leading
indicators for construction sites: A machine learning approach.” Autom.
Constr. 93 (Sep): 375–386. https://doi.org/10.1016/j.autcon.2018.03
.022.

Raheem, A. A., and J. W. Hinze. 2014. “Disparity between construction
safety standards: A global analysis.” Saf. Sci. 70 (Dec): 276–287.
https://doi.org/10.1016/j.ssci.2014.06.012.

Salas, R., and M. Hallowell. 2016. “Predictive validity of safety leading
indicators: Empirical assessment in the oil and gas sector.” J. Constr.
Eng. Manage. 142 (10): 1–11. https://doi.org/10.1061/(ASCE)CO.1943
-7862.0001167.

Sarkar, S., A. Pramanik, J. Maiti, and G. Reniers. 2020. “Predicting and
analyzing injury severity: A machine learning-based approach using
class-imbalanced proactive and reactive data.” Saf. Sci. 125 (May):
104616. https://doi.org/10.1016/j.ssci.2020.104616.

Sarkar, S., S. Vinay, R. Raj, J. Maiti, and P. Mitra. 2019. “Application of
optimized machine learning techniques for prediction of occupational
accidents.” Comput. Oper. Res. 106 (Jun): 210–224. https://doi.org/10
.1016/j.cor.2018.02.021.

Schwatka, N. V., and J. C. Rosecrance. 2016. “Safety climate and safety
behaviors in the construction industry: The importance of co-workers
commitment to safety.” Work 54 (2): 401–413. https://doi.org/10.3233
/WOR-162341.

Seger, C. 2018. “An investigation of categorical variable encoding
techniques in machine learning: Binary versus one-hot and feature hash-
ing.” Accessed August 1, 2022. https://www.diva-portal.org/smash/get
/diva2:1259073/FULLTEXT01.pdf.

Shawky, O. A., A. Hagag, E. S. A. El-Dahshan, and M. A. Ismail. 2020.
“Remote sensing image scene classification using CNN-MLP with data
augmentation.”Optik 221 (Nov): 165356. https://doi.org/10.1016/j.ijleo
.2020.165356.

Shehadeh, A., O. Alshboul, R. E. Al Mamlook, and O. Hamedat. 2021.
“Machine learning models for predicting the residual value of heavy
construction equipment: An evaluation of modified decision tree,
LightGBM, and XGBoost regression.” Autom. Constr. 129 (Sep):
103827. https://doi.org/10.1016/j.autcon.2021.103827.

Shin, Y. 2019. “Application of stochastic gradient boosting approach to
early prediction of safety accidents at construction site.” Adv. Civ.
Eng. 2019 (Dec): 1–9. https://doi.org/10.1155/2019/1574297.

Siu, O. L., D. R. Phillips, and T. W. Leung. 2004. “Safety climate and safety
performance among construction workers in Hong Kong: The role of
psychological strains as mediators.” Accid. Anal. Prev. 36 (3): 359–366.
https://doi.org/10.1016/S0001-4575(03)00016-2.

Soibelman, L., and H. Kim. 2002. “Data preparation process for construc-
tion knowledge generation through knowledge discovery in databases.”
J. Comput. Civ. Eng. 16 (1): 39–48. https://doi.org/10.1061/(ASCE)
0887-3801(2002)16:1(39).

Son, H., C. Kim, and C. Kim. 2012. “Hybrid principal component analysis
and support vector machine model for predicting the cost performance
of commercial building projects using pre-project planning variables.”

Autom. Constr. 27 (Nov): 60–66. https://doi.org/10.1016/j.autcon.2012
.05.013.

Teizer, J., and T. Cheng. 2015. “Proximity hazard indicator for workers-on-
foot near miss interactions with construction equipment and geo-
referenced hazard areas.” Autom. Constr. 60 (Dec): 58–73. https://doi
.org/10.1016/j.autcon.2015.09.003.

Tixier, A. J.-P., A. Albert, and M. R. Hallowell. 2018. “Proposing and
validating a new way of construction hazard recognition training in
academia: Mixed-method approach.” Pract. Period. Struct. Des.
Constr. 23 (1): 04017027. https://doi.org/10.1061/(ASCE)SC.1943
-5576.0000347.

Tixier, A. J.-P., M. R. Hallowell, and B. Rajagopalan. 2017. “Construction
safety risk modeling and simulation.” Risk Anal. 37 (10): 1917–1935.
https://doi.org/10.1111/risa.12772.

Tixier, A. J.-P., M. R. Hallowell, B. Rajagopalan, and D. Bowman. 2016a.
“Application of machine learning to construction injury prediction.”
Autom. Constr. 69 (Sep): 102–114. https://doi.org/10.1016/j.autcon
.2016.05.016.

Tixier, A. J.-P., M. R. Hallowell, B. Rajagopalan, and D. Bowman. 2016b.
“Automated content analysis for construction safety: A natural language
processing system to extract precursors and outcomes from unstruc-
tured injury reports.” Autom. Constr. 62 (Feb): 45–56. https://doi.org/10
.1016/j.autcon.2015.11.001.

US Bureau of Labor Statistics. 2020a. “Injuries, illnesses, and fatalities.”
Accessed October 2, 2021. https://www.bls.gov/iif/nonfatal-injuries
-and-illnesses-tables/soii-summary-historical.htm#20Summary_Tables.

US Bureau of Labor Statistics. 2020b. “National census of fatal occupa-
tional injuries in 2019.” Accessed December 16, 2020. https://www
.bls.gov/news.release/archives/cfoi_12162020.pdf.

Van der Maaten, L. J., and G. E. Hinton. 2008. “Visualizing data using
t-SNE.” J. Mach. Learn. Res. 9 (11): 2579–2605.

Versteeg, K., P. Bigelow, A. M. Dale, and A. Chaurasia. 2019. “Utilizing
construction safety leading and lagging indicators to measure project
safety performance: A case study.” Saf. Sci. 120 (Dec): 411–421.
https://doi.org/10.1016/j.ssci.2019.06.035.

Wang, J., and S. Razavi. 2019. “Network-based safety leading indicators
for safety risk analysis in construction.” In Vol. 63 of Proc., Human
Factors and Ergonomics Society Annual Meeting 2019, 1787–1791.
Los Angeles: SAGE.

Witten, I. H., and E. Frank. 2002. “Data mining: Practical machine learning
tools and techniques with Java implementations.” ACM Sigmod Rec.
31 (1): 76–77. https://doi.org/10.1145/507338.507355.

Yeoum, S. J., and Y. H. Lee. 2013. “A study on prediction modeling of
Korea Millitary aircraft accident occurance.” Int. J. Ind. Eng. 20 (Sep):
562–573.

Zhang, H., F. Yang, Y. Li, and H. Li. 2015. “Predicting profitability of listed
construction companies based on principal component analysis and
support vector machine—Evidence from China.” Autom. Constr.
53 (May): 22–28. https://doi.org/10.1016/j.autcon.2015.03.001.

Zhang, M., T. Cao, and X. Zhao. 2019. “Using smartphones to detect
and identify construction workers’ near-miss falls based on ANN.”
J. Constr. Eng. Manage. 145 (1): 04018120. https://doi.org/10.1061
/(ASCE)CO.1943-7862.0001582.

Zhu, R., X. Hu, J. Hou, and X. Li. 2021. “Application of machine learning
techniques for predicting the consequences of construction accidents in
China.” Process Saf. Environ. Prot. 145 (Jan): 293–302. https://doi.org
/10.1016/j.psep.2020.08.006.

© ASCE 04023169-15 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2024, 150(3): 04023169 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

72
.6

5.
22

.1
73

 o
n 

01
/2

0/
24

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0002146
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002146
https://doi.org/10.1016/j.jsr.2023.04.005
https://doi.org/10.1016/j.jsr.2023.04.005
https://doi.org/10.1016/j.autcon.2018.03.022
https://doi.org/10.1016/j.autcon.2018.03.022
https://doi.org/10.1016/j.ssci.2014.06.012
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001167
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001167
https://doi.org/10.1016/j.ssci.2020.104616
https://doi.org/10.1016/j.cor.2018.02.021
https://doi.org/10.1016/j.cor.2018.02.021
https://doi.org/10.3233/WOR-162341
https://doi.org/10.3233/WOR-162341
https://www.diva-portal.org/smash/get/diva2:1259073/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1259073/FULLTEXT01.pdf
https://doi.org/10.1016/j.ijleo.2020.165356
https://doi.org/10.1016/j.ijleo.2020.165356
https://doi.org/10.1016/j.autcon.2021.103827
https://doi.org/10.1155/2019/1574297
https://doi.org/10.1016/S0001-4575(03)00016-2
https://doi.org/10.1061/(ASCE)0887-3801(2002)16:1(39)
https://doi.org/10.1061/(ASCE)0887-3801(2002)16:1(39)
https://doi.org/10.1016/j.autcon.2012.05.013
https://doi.org/10.1016/j.autcon.2012.05.013
https://doi.org/10.1016/j.autcon.2015.09.003
https://doi.org/10.1016/j.autcon.2015.09.003
https://doi.org/10.1061/(ASCE)SC.1943-5576.0000347
https://doi.org/10.1061/(ASCE)SC.1943-5576.0000347
https://doi.org/10.1111/risa.12772
https://doi.org/10.1016/j.autcon.2016.05.016
https://doi.org/10.1016/j.autcon.2016.05.016
https://doi.org/10.1016/j.autcon.2015.11.001
https://doi.org/10.1016/j.autcon.2015.11.001
https://www.bls.gov/iif/nonfatal-injuries-and-illnesses-tables/soii-summary-historical.htm#20Summary_Tables
https://www.bls.gov/iif/nonfatal-injuries-and-illnesses-tables/soii-summary-historical.htm#20Summary_Tables
https://www.bls.gov/news.release/archives/cfoi_12162020.pdf
https://www.bls.gov/news.release/archives/cfoi_12162020.pdf
https://doi.org/10.1016/j.ssci.2019.06.035
https://doi.org/10.1145/507338.507355
https://doi.org/10.1016/j.autcon.2015.03.001
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001582
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001582
https://doi.org/10.1016/j.psep.2020.08.006
https://doi.org/10.1016/j.psep.2020.08.006

