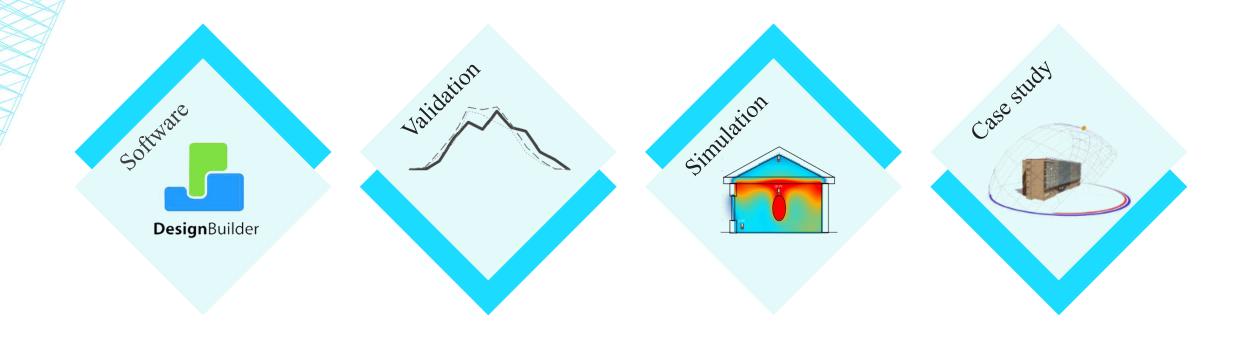
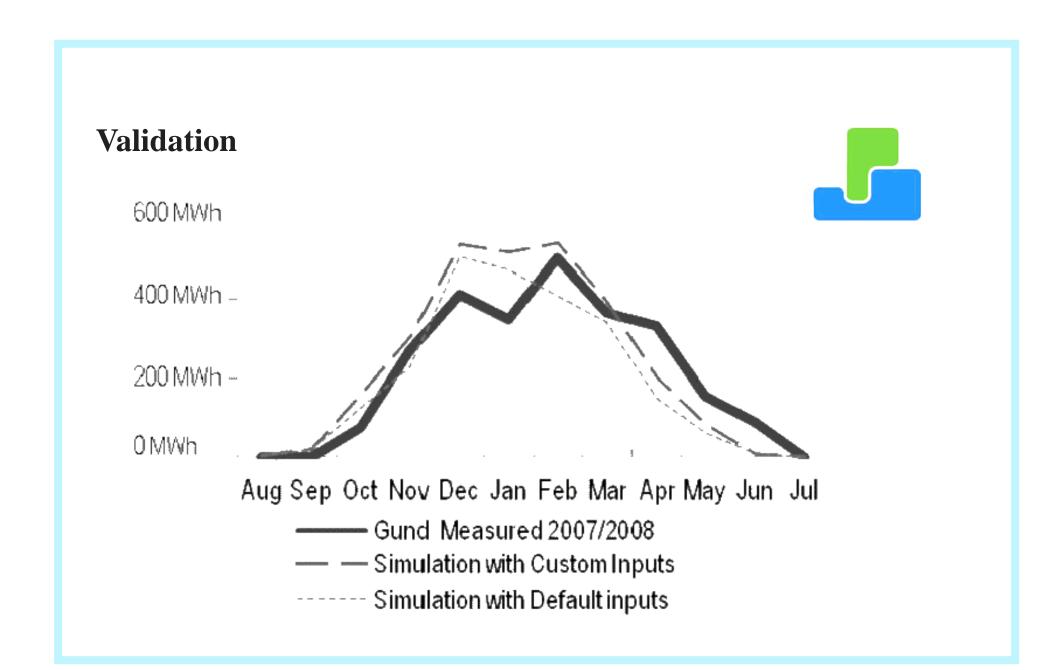
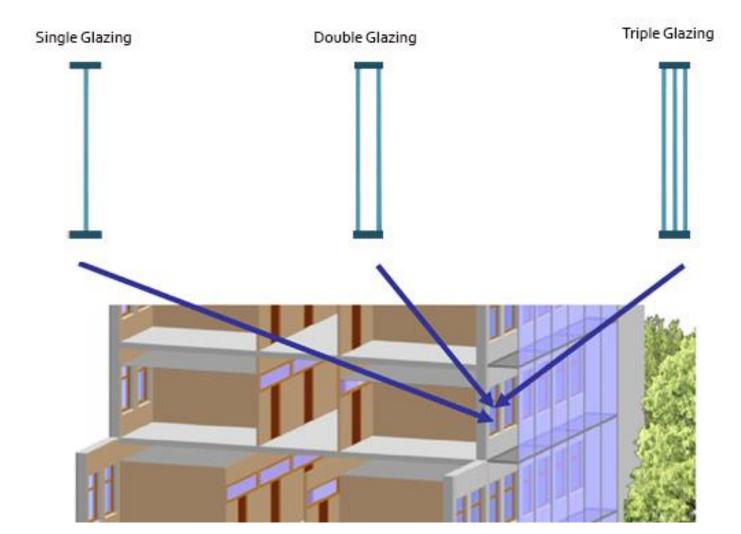

Characteristics of Glazing Layers of Double-Skin Facades and Energy Consumption


Mohammadmehdi Danesh



Research Process

Research Methodology



Simulation process

With regard to double skin facades and considering the glazing type of the inner and outer skins, there are 6 independent variables for the thermal simulation which is performed

As a result, there will be different energy transfer rates into the building that contain dependent variables

Case Study Building

The studied building is situated in Tehran

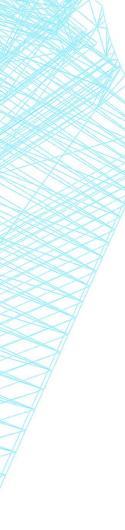
The case study is the building of Science in the main campus of IUST, constructed in 2009

Having 11535 m² total floor area, the building consists of 5 floors on ground level that is 73 m long and 22 m wide

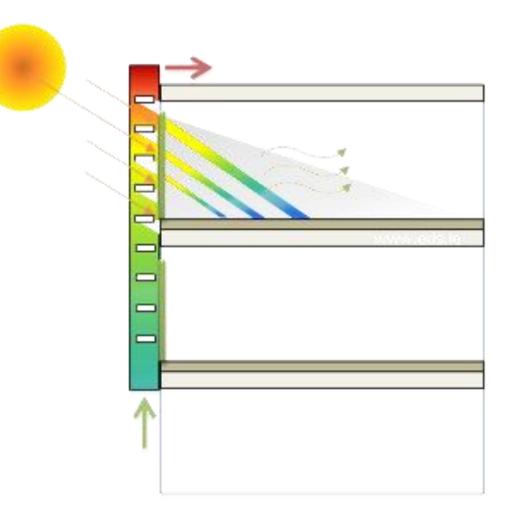
Glazing type properties

Glazing type	SHGC	solar transmittance	U-Value (W/m ^{2°} K)
Single clear-glazing 3.2 mm glass	0.84	0.82	7.24
Double clear-glazing 3.2 mm glass, 6.4 mm air	0.74	0.68	4.93
Triple clear-glazing 3.2 mm glass, 6.4 mm air	0.59	0.52	4.11

Thermal behavior Analysis by Changes in Number of Inner Layers of DSF


Title	Results			
	Single-glazing	Double-glazing	Triple-glazing	
Mean energy required for cooling kWh/m ²	54.13	53.30	51.71	
Mean energy required for heating kWh/m ²	234.1	226.3	218.9	
Mean solar energy transmission kWh/m ²	582.3	572.8	553.6	

Thermal behavior Analysis by Changes in Number of Outer Layers of DSF


	Results			
Title	Single-glazing	Double-glazing	Triple- glazing	
Mean energy required for cooling kWh/m ²	54.13	54.17	54.11	
Mean energy required for heating kWh/m ²	234.2	235.9	238.2	
Mean solar energy transmission kWh/m ²	528.3	478.5	274.8	

Thermal behavior Analysis by Changes in Number of Inner and Outer Layers of DSF

		Double skin facade (DSF)					
		Inner layer		Outer layer			
Glazing type	SHGC	Cooling load	Heating load	solar transmissio n	Cooling load	Heating load	solar transmissio n
Single clear-glazing 3.2 mm glass	0.84	54.13	234.1	582.3	54.13	234.2	528.3
Double clear-glazing 3.2 mm glass, 6.4 mm air	0.74	53.30	226.3	572.8	54.17	235.9	478.5
Triple clear-glazing 3.2 mm glass, 6.4 mm air	0.59	51.71	218.9	553.6	54.11	238.2	274.8

Thermosiphon effect in DSF

References

- 1. how, C. L. (2011). Numerical studies on smoke spread in the cavity of a double-skin facade. *Journal of Civil Engineering and Management*, *17*(3), 371-39.2
- 2. Chow, W., Hung, W., Gao, Y., Zou, G., & Dong, H. (2007). Experimental study on smoke movement leading to glass damages in double-skinned façade. *Construction and Building Materials, 21*(3), 556-566.
- 3. Ding, W., Hasemi, Y., & Yamada, T. (2005). Natural ventilation performance of a double-skin façade with a solar chimney. *Energy and Buildings*, *37*(4), 411-418.
- 4. Gratia, E., & De Herde, A. (2004a). Natural cooling strategies efficiency in an office building with a double-skin façade. *Energy and Buildings, 36*(11), 1139-1152.
- 5. Gratia, E., & De Herde, A. (2004b). Optimal operation of a south double-skin facade. *Energy and Buildings*, *36*(1), 41-60.
- 6. Gratia, E., & De Herde, A. (2007). Greenhouse effect in double-skin facade. *Energy and Buildings,* 39(2), 199-211.
- 7. Gratia, E., & De Herde, A. (2007). The most efficient position of shading devices in a double-skin facade. *Energy and Buildings, 39*(3), 364-373.

- 8. Linda, G., & David, W. (2002). Architectural Research Methods. America: John Wiley& Sons, Inc
- 9. Murakami, S. (1992). New Scales for Ventilation Effeciency and Their Application Based on Numerical Simulation of Room Airflow. *ISRACVE University of Tokyo*, 22-37.
- 10. Nasrollahi, N., & Salehi, M. (2015). Performance enhancement of double skin facades in hot and dry climates using wind parameters. *Renewable Energy*, *83*, 1-12.
- 11. Pasut, W., & De Carli, M. (2012). Evaluation of various CFD modelling strategies in predicting airflow and temperature in a naturally ventilated double skin façade. *Applied Thermal Engineering*, *37*, 267-274.
- 12. Poirazis, H. (2004). Double skin façades for office buildings. Holland: Lund Institute of Technology .
- Safer, N., Woloszyn, M., & Roux, J. J. (2005). Three-dimensional simulation with a CFD tool of the airflow phenomena in single floor double-skin facade equipped with a venetian blind. *Solar Energy*, 79(2), 193-203.
- 14. Salehi, S., Mahmoodi, H., Dibaei, N., & Karimzadeh, S. (2012). An Analysis of the Relationship between the New Environmental Paradigm and Household Energy Consumption. *Environmental Sciences*, 9(4), 29-44.
- 15. Stec, W., Van Paassen, A., & Maziarz, A. (2005). Modelling the double skin façade with plants. *Energy* and Buildings, 37(5), 419-427.

Thank you